bluemath_tk.predictor package
Submodules
bluemath_tk.predictor.xwt module
- class bluemath_tk.predictor.xwt.XWT(steps: Dict[str, BlueMathModel])[source]
- Bases: - BlueMathModel,- BlueMathPipeline- Xly Weather Types (XWT) class. - This class implements the XWT method to identify and classify weather patterns in a dataset. The XWT method is a combination of Principal Component Analysis (PCA) and K-means clustering (KMA). - steps
- The steps of the XWT method. - Type:
- Dict[str, BlueMathModel] 
 
 - num_clusters
- The number of clusters. - Type:
- int 
 
 - kma_bmus
- The KMA best matching units (BMUs). - Type:
- pd.DataFrame 
 
 - property clusters_annual_probs_df
 - property clusters_monthly_probs_df
 - property clusters_perpetual_year_probs_df
 - property clusters_probs_df
 - property clusters_seasonal_probs_df
 - property data: Dataset
 - fit(data: Dataset, fit_params: Dict[str, Dict[str, Any]] = {}, variable_to_sort_bmus: str = None) None[source]
- Fit the XWT model to the data. - Parameters:
- data (xr.Dataset) – The data to fit the model to. Must be PCA formatted. 
- fit_params (Dict[str, Dict[str, Any]], optional) – The fitting parameters for the PCA and KMA models. Default is {}. 
- variable_to_sort_bmus (str, optional) – The variable to sort the BMUs. Default is None. 
 
- Raises:
- XWTError – If the data is not PCA formatted. 
- TODO – Standarize PCs by first PC variance.: pca.pcs_df / pca.pcs.stds.isel(n_component=0).values ?? 
 
 
 - property get_conditioned_probabilities
 - plot_dwts_probs(vmax: float = 0.15, vmax_seasonality: float = 0.15, plot_text: bool = False) None[source]
- Plot Daily Weather Types bmus probabilities. - Parameters:
- vmax (float, optional) – The maximum value of the colorbar. Default is 0.15. 
- vmax_seasonality (float, optional) – The maximum value of the colorbar for seasonality. Default is 0.15. 
- plot_text (bool, optional) – Whether to plot the text in each cell. Default is False. 
 
- Raises:
- ValueError – If the kma_bmus time sampling is not daily. 
 
 - plot_map_features(ax: Axes, land_color: str = array([0.9375, 0.9375, 0.859375])) None[source]
- Plot map features on an axis. - Parameters:
- ax (Axes) – The axis to plot the map features on. 
- land_color (str, optional) – The color of the land. Default is cfeature.COLORS[“land”]. 
 
 
 - plot_perpetual_year() Axes[source]
- Plot perpetual year bmus probabilities. - Returns:
- The plot with the perpetual year bmus probabilities. 
- Return type:
- Axes 
 
 - plot_xwts(var_to_plot: str, anomaly: bool = False, map_center: tuple = None) Collection[source]
- Plot the XWTs for a variable. - Parameters:
- var_to_plot (str) – The variable to plot. 
- anomaly (bool, optional) – Whether to plot the anomaly of the variable. Default is False. 
- map_center (tuple, optional) – The center of the map. Default is None. 
 
- Returns:
- The grid specification with the XWTs plot. 
- Return type:
- GridSpec 
 
 
- exception bluemath_tk.predictor.xwt.XWTError(message='XWT error occurred.')[source]
- Bases: - Exception- Custom exception for XWT class. 
- bluemath_tk.predictor.xwt.check_model_is_fitted(func)[source]
- Decorator to check if the model is fitted. 
- bluemath_tk.predictor.xwt.get_dynamic_estela_predictor(data: Dataset, estela: Dataset, check_interpolation: bool = True, verbose: bool = False) Dataset[source]
- Transform an xarray dataset of longitude, latitude, and time into one where each longitude, latitude value at each time is replaced by the corresponding time - t, where t is specified in the estela dataset. - Parameters ———-ltimes = estela.where(estela.F >= 0, np.nan).traveltime.astype(int) estela_max_traveltime = estela_traveltimes.max().values for traveltime in range(estela_max_traveltime): - data = data.w - dataxr.Dataset
- The input dataset with dimensions longitude, latitude, and time. 
- estelaxr.Dataset
- The dataset containing the F values with dimensions longitude and latitude. 
- check_interpolationbool, optional
- Whether to check if the data is interpolated. Default is True. 
- verbosebool, optional
- Whether to print verbose output. Default is False. If False, Dask logs are suppressed. If True, Dask logs are shown. 
 - Returns:
- The transformed dataset. 
- Return type:
- xr.Dataset 
 
Module contents
Project: BlueMath_tk Sub-Module: predictor Author: GeoOcean Research Group, Universidad de Cantabria Repository: https://github.com/GeoOcean/BlueMath_tk.git Status: Under development (Working)
- class bluemath_tk.predictor.XWT(steps: Dict[str, BlueMathModel])[source]
- Bases: - BlueMathModel,- BlueMathPipeline- Xly Weather Types (XWT) class. - This class implements the XWT method to identify and classify weather patterns in a dataset. The XWT method is a combination of Principal Component Analysis (PCA) and K-means clustering (KMA). - steps
- The steps of the XWT method. - Type:
- Dict[str, BlueMathModel] 
 
 - num_clusters
- The number of clusters. - Type:
- int 
 
 - kma_bmus
- The KMA best matching units (BMUs). - Type:
- pd.DataFrame 
 
 - property clusters_annual_probs_df
 - property clusters_monthly_probs_df
 - property clusters_perpetual_year_probs_df
 - property clusters_probs_df
 - property clusters_seasonal_probs_df
 - property data: Dataset
 - fit(data: Dataset, fit_params: Dict[str, Dict[str, Any]] = {}, variable_to_sort_bmus: str = None) None[source]
- Fit the XWT model to the data. - Parameters:
- data (xr.Dataset) – The data to fit the model to. Must be PCA formatted. 
- fit_params (Dict[str, Dict[str, Any]], optional) – The fitting parameters for the PCA and KMA models. Default is {}. 
- variable_to_sort_bmus (str, optional) – The variable to sort the BMUs. Default is None. 
 
- Raises:
- XWTError – If the data is not PCA formatted. 
- TODO – Standarize PCs by first PC variance.: pca.pcs_df / pca.pcs.stds.isel(n_component=0).values ?? 
 
 
 - property get_conditioned_probabilities
 - plot_dwts_probs(vmax: float = 0.15, vmax_seasonality: float = 0.15, plot_text: bool = False) None[source]
- Plot Daily Weather Types bmus probabilities. - Parameters:
- vmax (float, optional) – The maximum value of the colorbar. Default is 0.15. 
- vmax_seasonality (float, optional) – The maximum value of the colorbar for seasonality. Default is 0.15. 
- plot_text (bool, optional) – Whether to plot the text in each cell. Default is False. 
 
- Raises:
- ValueError – If the kma_bmus time sampling is not daily. 
 
 - plot_map_features(ax: Axes, land_color: str = array([0.9375, 0.9375, 0.859375])) None[source]
- Plot map features on an axis. - Parameters:
- ax (Axes) – The axis to plot the map features on. 
- land_color (str, optional) – The color of the land. Default is cfeature.COLORS[“land”]. 
 
 
 - plot_perpetual_year() Axes[source]
- Plot perpetual year bmus probabilities. - Returns:
- The plot with the perpetual year bmus probabilities. 
- Return type:
- Axes 
 
 - plot_xwts(var_to_plot: str, anomaly: bool = False, map_center: tuple = None) Collection[source]
- Plot the XWTs for a variable. - Parameters:
- var_to_plot (str) – The variable to plot. 
- anomaly (bool, optional) – Whether to plot the anomaly of the variable. Default is False. 
- map_center (tuple, optional) – The center of the map. Default is None. 
 
- Returns:
- The grid specification with the XWTs plot. 
- Return type:
- GridSpec